Godel's theorem as a corollary of impossibility of complete axiomatization of geometry

 Yuri A. Rylov

Institute for Problems in Mechanics, Russian Academy of Sciences
 101-1 ,Vernadskii Ave., Moscow, 119526, Russia
 email: rylov@ipmnet.ru
 Web site: http://rsfq1.physics.sunysb.edu/~rylov/yrylov.htm
or mirror Web site: http://gasdyn-ipm.ipmnet.ru/~rylov/yrylov.htm

Updated September 1, 2007

abstract

Not any geometry can be axiomatized. The paradoxical Godel's theorem starts from the supposition that any geometry can be axiomatized and goes to the result, that not any geometry can be axiomatized. One considers example of two close geometries (Riemannian geometry and $\sigma $-Riemannian one), which are constructed by different methods and distinguish in some details. The Riemannian geometry reminds such a geometry, which is only a part of the full geometry. Such a possibility is covered by the Godel's theorem.

There is text of the paper in English (pdf, ps) and in Russian (ps, pdf)